Variable Properties in a Single Class of Excitatory Spinal Synapse
نویسندگان
چکیده
منابع مشابه
Variable properties in a single class of excitatory spinal synapse.
Although synaptic properties are specific to the type of synapse examined, there is evidence to suggest that properties can vary in individual synaptic populations. Here, a large sample of monosynaptic connections made by excitatory interneurons (EINs) onto motor neurons in the lamprey spinal cord locomotor network has been used to examine the properties of a single class of spinal synapse in d...
متن کاملEphecting Excitatory Synapse Development
Alterations in synapse number and morphology are associated with devastating psychiatric and neurologic disorders. In this issue of Cell, Margolis et al. (2010) show that the RhoA-guanine exchange factor (GEF) Ephexin5 limits the numbers of excitatory synapses that neurons receive, thus identifying a new mechanism controlling synaptogenesis.
متن کاملThe architecture of an excitatory synapse.
The functioning of excitatory synapses in the mammalian brain is governed by macromolecular complexes that are held together by protein-protein, protein-lipid and lipid-lipid interactions. On the presynaptic side, neurotransmitter (NT)-filled synaptic vesicles (SVs) are recruited to specialized release sites termed active zones. Glutamate is the major excitatory NT. It is released from presynap...
متن کاملHow a Piggyback Synapse Listens in to Tune Excitatory Terminals
In this issue of Neuron, Mende et al. (2016) report how axo-axonic synapses of interneurons balance the strength of glutamatergic terminals in the spinal cord. The results highlight presynaptic roles of mGluR1 receptors and of BDNF as a retrograde signal to regulate GABA synthesis and tune transmission.
متن کاملO-GlcNAc transferase regulates excitatory synapse maturity.
Experience-driven synaptic plasticity is believed to underlie adaptive behavior by rearranging the way neuronal circuits process information. We have previously discovered that O-GlcNAc transferase (OGT), an enzyme that modifies protein function by attaching β-N-acetylglucosamine (GlcNAc) to serine and threonine residues of intracellular proteins (O-GlcNAc), regulates food intake by modulating ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Neuroscience
سال: 2003
ISSN: 0270-6474,1529-2401
DOI: 10.1523/jneurosci.23-08-03154.2003